Rice gall dwarf virus exploits tubules to facilitate viral spread among cultured insect vector cells derived from leafhopper Recilia dorsalis

نویسندگان

  • Hongyan Chen
  • Limin Zheng
  • Dongsheng Jia
  • Peng Zhang
  • Qian Chen
  • Qifei Liu
  • Taiyun Wei
چکیده

Rice gall dwarf virus (RGDV), a member of the family Reoviridae, causes repeated epidemics in rice fields in southern China. An RGDV isolate collected from Guangdong Province (southern China) is mainly transmitted by leafhopper vector Recilia dorsalis in a persistent-propagative manner. The infection by RGDV induces the formation of virus-containing tubules in the plant host and insect vector. In this study, we established continuous cell cultures of the leafhopper R. dorsalis to investigate the functional role of these tubules within the insect vector. Cytopathologic studies revealed that the tubules, which comprised viral non-structural protein Pns11 and contained viral particles, were able to protrude from the surface of cultured leafhopper cells. Tubule-like structures formed in non-host insect cells after the expression of Pns11 in a baculovirus system, suggesting that Pns11 was the minimal viral factor required for the formation of the tubules induced by RGDV infection. In cultured leafhopper cells, knockdown of Pns11 expression from RNA interference, induced by synthesized dsRNA from the Pns11 gene, abolished the formation of such tubules, preventing the direct cell-to-cell spread of RGDV without significant effects on viral multiplication. All these results show that RGDV exploits virus-containing tubules to facilitate viral spread among its insect vector cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Virus-Induced Tubules: A Vehicle for Spread of Virions into Ovary Oocyte Cells of an Insect Vector

Many arthropod-borne viruses are persistently propagated and transovarially transmitted by female insect vectors through eggs, but the mechanism remains poorly understood. Insect oocytes are surrounded by a layer of follicular cells, which are connected to the oocyte through actin-based microvilli. Here, we demonstrate that a plant reovirus, rice gall dwarf virus (RGDV), exploits virus-containi...

متن کامل

Tubular Structure Induced by a Plant Virus Facilitates Viral Spread in Its Vector Insect

Rice dwarf virus (RDV) replicates in and is transmitted by a leafhopper vector in a persistent-propagative manner. Previous cytopathologic and genetic data revealed that tubular structures, constructed by the nonstructural viral protein Pns10, contain viral particles and are directly involved in the intercellular spread of RDV among cultured leafhopper cells. Here, we demonstrated that RDV expl...

متن کامل

Autophagy pathway induced by a plant virus facilitates viral spread and transmission by its insect vector

Many viral pathogens are persistently transmitted by insect vectors and cause agricultural or health problems. Generally, an insect vector can use autophagy as an intrinsic antiviral defense mechanism against viral infection. Whether viruses can evolve to exploit autophagy to promote their transmission by insect vectors is still unknown. Here, we show that the autophagic process is triggered by...

متن کامل

The spread of Rice dwarf virus among cells of its insect vector exploits virus-induced tubular structures.

Various cytopathological structures, known as inclusion bodies, are formed upon infection of cultured leafhopper cells by Rice dwarf virus, a member of the family Reoviridae. These structures include tubules of approximately 85 nm in diameter which are composed of the nonstructural viral protein Pns10 and contain viral particles. Such tubular structures were produced in heterologous non-host in...

متن کامل

Tubules of plant reoviruses exploit tropomodulin to regulate actin-based tubule motility in insect vector

Plant reoviruses are known to exploit virion-packaging tubules formed by virus-encoding non-structural proteins for viral spread in insect vectors. Tubules are propelled by actin-based tubule motility (ABTM) to overcome membrane or tissue barriers in insect vectors. To further understand which insect factors mediate ABTM, we utilized yeast two-hybrid and bimolecular fluorescence complementation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013